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The differential equations governing the transmission of one-dimensional sound waves
in a non-uniform duct carrying a subsonic compressible mean flow have been the subject
of a recent debate [1, 2]. Of the two formulations presented, one is considered to be
non-acoustical and the other as neglecting the spatial variation of the speed of sound. The
present paper shows that both formulations are acoustical and represent valid
approximations to correct conditions for isentropic sound propagation in a subsonic low
Mach number duct. Each formulation is associated with an ‘‘error wave’’, which is
essentially a hydrodynamic wave when the mean flow Mach number is small. Three-port
modelling is required, however, to capture this wave when the Mach number of the mean
flow is relatively large and a numerical matrizant approach is described which can be used
for this purpose.
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1. INTRODUCTION

As has been noted in a recent debate between Gupta [1] and Miles [2], some confusion
appears to exist on the differential equations governing the one-dimensional sound
propagation in a non-uniform duct carrying a compressible subsonic mean flow. The
debate is related to an earlier paper by Gupta, Easwaran and Munjal [3], which presented
a numerical solution of the problem by using a geometrical segmentation approach. A
slight discrepancy was observed between the results of the segmentation method and the
corresponding results of Miles [4] which are based on the numerical evaluation of the
matrizant of the governing differential equations (see equations (9)–(11)). In reference [3]
this discrepancy was attributed to the effects of the higher order modes which had been
neglected. Gupta [1] pointed out that this conclusion was erroneous because the higher
order modes had also been neglected in the formulation of Miles [4]. He then showed that,
in the limit of infinite number of segments, the segmentation approach of reference [3]
becomes equivalent to the differential equation

$p'
n'%=$c11

c21

c12

c22%$pn% , (1)

where

c11 = [−ik0 +M0(1− g0M2
0 )(ln S)'/(1−M2

0 )]M0/(1−M2
0 ), (2)

c12 = [ik0 +2M0(ln S)'/(1−M2
0 )]r0c0/(1−M2

0 ), (3)
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c21 = [ik0 + (g0 −1)M3
0 (ln S)'/(1−M2

0 )]/(1−M2
0 )r0c0, (4)

c22 = [−ik0 − (1+M2
0 )(ln S)'/M0(1−M2

0 )]M0/(1−M2
0 ). (5)

Here p is the acoustic pressure, n is the acoustic particle velocity, S is the pipe
cross-sectional area, r0 is the ambient density, c0 is the local speed of sound, k0 =v/c0 is
the local wavenumber and M0 = n0/c0 is the Mach number of the mean flow,
c0 =z(g0p0/r0) is the speed of sound, n0 is the mean flow velocity, p0 is the ambient
pressure, g0 = cp0/cv0 is the ratio of specific heat coefficients at constant pressure, cp0 and
at constant volume, cv0, a prime (') denotes differentiation with respect to x, the pipe axis,
v, is the radian frequency and exp(−ivt) time dependence is assumed for all acoustic
quantities.

Upon observing that the elements cij of the system matrix do not agree with those given
by Miles [4], Gupta [1] claimed that this was because Miles [4] had implicitly assumed in
his formulation of the problem that the speed of sound is spatially constant; that is, c'0 =0.
Miles [2] responded by stating that the discrepancy was partly due to typographical errors;
however, he did not agree that his formulation implicitly assumed c'0 =0. Furthermore,
he claimed that the formulation presented by Gupta [1] was flawed by being non-acoustic.
Miles [2] also expanded the analysis of his earlier paper by giving, for both compressible
and incompressible mean flow cases, the system differential equations for the velocity
potential and the non-velocity potential formulations of the problem. Here, only the
non-velocity potential formulation for the compressible flow case is of interest. The system
differential equations given by Miles [2] for this case, which is also the case considered in
the earlier paper by Miles [4], are

$p'
n'%=$B11

B21

c12

c22%$pn% , (6)

where,

B11 = [−ik0 +M0(ln S)']M0/(1−M2
0 ), B21 = ik0/(1−M2

0 )r0c0. (7, 8)

Here, c12 and c22 are as given by equations (3) and (5). Thus, there is indeed a difference
between the two approaches. According to Miles [2], this difference arises because he is
doing acoustics and Gupta’s [1] formulation is non-acoustic. According to Gupta [1], on
the other hand, the difference arises because the formulation of Miles [4] tacitly assumes
c'0 =0, which miles [2] rejects strongly.

The present paper aims to pursue this debate not only because the related discussion
has not been conclusive but also because the subject matter is related to certain
fundamental issues on the isentropicity of sound propagation which have not been
explicitly discussed in the open literature, hitherto. The present analysis will show that the
formulations of Miles [4] and Gupta [1] are both acoustical and represent valid
approximations to correct conditions for isentropic sound propagation in the case of a
non-uniform duct carrying a compressible subsonic low Mach number mean flow.
Each formulation is associated with an ‘‘error wave’’, which is essentially a hydrodynamic
wave when the mean flow Mach number is small. Three-port modelling is required,
however, to capture this wave when the Mach number of the mean flow is relatively
large and a numerical matrizant approach is described which can be used for this
purpose.
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2. THEORETICAL DEVELOPMENT

2.1.   

With a slight change of notation, the governing acoustic equations used by Miles [2, 4]
are as follows. The continuity equation is

D0r+ r0n'− n0(ln r0)'r− r0(ln n0)'n=0. (9)

The momentum equation is

r0(D0n+ n'0n)+ n0n'0r+ p'=0. (10)

The energy equation is (a perfect ambient gas being assumed)

D0s=0, (11)

where D0 denotes the time independent material derivative based on the mean flow velocity,
D0 =−iv+ n01/1x, r is the acoustic density and s denotes the entropy fluctuations. These
equations come from the usual linearization of the basic one-dimensional isentropic gas
dynamics equations. The latter also yield the classical isentropic steady mean flow
equations which can be expressed as follows for the computation of the ambient gradients:

(ln n0)'=−(ln S)'/(1−M2
0 ), (ln p0)'= g0M2

0 (ln S)'/(1−M2
0 ),

(ln r0)'=M2
0 (ln S)'/(1−M2

0 ). (12–14)

The gradient of the mean flow temperature then follows from the perfect gas law
p0 = r0RT0, where T0 denotes the mean temperature. It should be noted that these
equations entail no assumption regarding the constancy of g0.

The following relationship is offered in reference [4] for the implementation of equation
(11): namely,

s= cv0(p− c2
0r)/p0. (15)

This relationship comes from the state equation

ds*= (c*v /p*) dp*− (c*p /r*) dr*, (16)

where a leading asterisk (*) indicates the total value of a quantity, that is, the sum of an
ambient value, which is always denoted by a subscript ‘‘0’’ in this paper, and a fluctuating
part: r*= r0 + r, p*= p0 + p, s*= s0 + s, c*v = cv0 + cv , c*p = cp0 + cp . If one assumes
that the fluctuating parts of the specific heat coefficients are negligible as small quantities
of the second order so that c*v = cv0 and c*p = cp0, and that cv0 and cp0 can be treated as
constants, then equation (16) can be integrated analytically to obtain

s*= cv0 ln [p*/(r*)g0]+C, (17)

where C is an integration constant. This equation can be linearized as usual by treating
the acoustic fluctuations as small quantities of the first order. This process gives, for the
entropy fluctuations,

s= cv0 ln [1+ (p− c2
0r)/p0]. (18)

Therefore, equation (15) will be true, approximately, if

=p0=2�=c2
0r− p=2. (19)
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If one assumes this to be valid, the energy equation, equation (11), which is tantamount
to stating that the sound propagation is isentropic, gives

p= c2
0r. (20)

This relationship is used by Miles [2, 4], Gupta [1] and Gupta et al. [3].

2.2.   

A more direct expression for entropy fluctuations can be derived by writing equation
(16) in the form

(p*/c*v )Ds*=Dp*− c*2Dr*, (21)

where D denotes the time independent material derivative based on the total fluid velocity,
D=−iv+(v0 + v)1/1x, and c*2 = g*p*/r* is the total speed of sound; that is,
c*= c0 + c. Upon assuming the fluctuating part of c*, c, is small to the second order,
equation (21) can be linearized as usual to obtain, upon using equations (13) and (14), the
following expression for the entropy fluctuations:

(p*/c*v )D0s=D0p− c2
0D0r. (22)

Then, from the energy equation,

D0p= c2
0D0r. (23)

This relationship, which is exact insofar as the fluctuations of the speed of sound due to
acoustic temperature fluctuations is small to the second order, is certainly a more accurate
consequence of isentropic propagation than equation (20) which requires that not only the
fluctuating parts of the specific heat cofficients are negligible but also that their mean values
are constant and the the inequality (19) is valid.

Equations (20) and (23) will be consistent if the speed of sound is spatially constant;
that is, c'0 =0. If the speed of sound is not constant and equation (20) is to be adopted
as a necessary condition for isentropic propagation, then the more accurate condition for
isentropic propagation, equation (23), can also be satisfied if one takes p'= c2

0r', but,
obviously, this latter relationship is mathematically inconsistent with equation (20). This
inconsistency is the central point in the debate between Gupta [1] and Miles [2]. Miles [2, 4]
does use equation (20) with the ‘‘pseudo-derivative’’ p'= c2

0r'. He shows that [2], if
equation (20) is used with its mathematically proper derivative, that is, r'= (p/c2

0 )' or
p'= (c2

0r)', then his formulation, equation (6), will become identical to Gupta’s
formulation, equation (1), but the former formulation is considered as ‘‘doing acoustics’’
and the latter is rejected as a non-acoustical one. From Gupta’s point of view, on the other
hand, the ‘‘pseudo-derivative’’ p'= c2

0r' can be true mathematically if c'0 =0 and hence
his claim that Miles [2, 4] implicitly assumes that the speed of sound is spatially constant.
This conclusion is, of course mathematically true but, as will be shown in the following,
it is also true that Miles’ formulation does provide an approximate implementation of
equation (23) for the problem under consideration, if the mean flow Mach number is low
enough. Here, it is perhaps appropriate to note that, in references [2, 4] there is no reference
to equation (23) as the condition for isentropic propagation and no attempt is made to
justify the use of the ‘‘pseudo-derivative’’ p'= c2

0r' with equation (20). Therefore, the
premises on which Miles’ formulation is justified in this paper represents only the present
author’s own views.

Miles’ formulation constitutes an approximate implementation of equation (23) as the
isentropicity condition. The nature of this approximation can be analyzed by using
equation (23) in full with equations (9) and (10) to form a coupled system of differential
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equations for p, n and r. As can be shown, after some algebra, this system of equations
can be expressed in a state-space form as

&p'
n'
o''= &B11

B21

a31

c12

c22

0

a13

0
a33'&pno' , (24)

where the acoustic variable o is defined by

o= c2
0r− p. (25)

It is seen that the elements of the first 2×2 block of the state-space matrix in equation
(24) are the same as the elements in the formulation of Miles [2], equation (6). The
remaining elements of the state-space matrix are given by

a13 =M2
0 (ln S)'/(1−M2

0 ) (26)

a31 = (ln g0)'+ (g0 −1)M2
0 (ln S)'/(1−M2

0 ), a33 = ik/M0 + a31. (27, 28)

The variable o provides a measure of the accuracy of the approximate isentropic
relationship p= c2

0r in the context of this theory: that is, equation (24). Equations (26)
and (27) can also be expressed as a13 = (ln r0)' and a31 = (ln c2

0 )', respectively. In the case
of a subsonic low Mach number duct, these off-diagonal gradients have negligible effect
on the solution of equation (24) (see the Appendix). Hence, upon assuming that the mean
flow Mach number is small, say, M0 Q 0·4, these terms can be neglected and equation (24)
can be expressed as a decoupled set of equations consisting of equation (6) and the
following first order differential equation for o: namely,

o'− (ik/M0 + a31)o=0. (29)

The solution of this equation, say, o1. can be written as

o1(x)=A1o1(0)exp0g
x

0

ik dx/M01 , (30)

where the amplification factor A1 is given by A1 = c2
0 (x)/c2

0 (0). This is a wave, subsequently
calle the ‘‘error wave’’ or, briefly, the o-wave, which travels in the direction of the mean
flow with the velocity of the mean flow. It will exist along the duct if any imbalance exists
at the origin between p and c2

0r. In the case of a subsonic compressible flow of a perfect
gas, the speed of sound increases along a divergent duct and decreases along a convergent
duct. Therefore, it follows that the o-wave will be amplified as it travels along a subsonic
divergent duct and it will be attentuated along a subsonic convergent duct. Equation (29)
is strictly valid for a subsonic low Mach number duct; the decoupling of equation (24) is
not justified for subsonic mean flows with a relatively large Mach number and the o-wave
should then be determined by solving equation (24). A numerical method which can be
used for the computation of such a three-port acoustic model of a non-uniform duct is
described in the Appendix.

This analysis shows that Miles’ formulation, equation (6), is approximately valid for
subsonic low Mach number ducts with the energy equation implemented in the form of
equation (23). The isentropic relationship p= c2

0r is satisfied with an error given by the
o-wave; however, in the case of a low Mach number duct, the acoustic pressure and particle
velocity fluctuations are not sensitive to this wave. Hence, under the conditions stated,
Miles [2] is right when he states that he is doing acoustics, but is Gupta’s [1] formulation
non-acoustical? This question will be taken up in the next section.
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2.3.   

Miles’ formulation reduces to that given by Gupta [1] if, for the derivative of equation
(20), one uses the mathematically proper expression p'= (c2

0r)' in place of the
pseudo-derivative p'= c2

0r'. The use of the latter, as shown in the previous section,
provides an ad hoc implementation of equation (23). On these premises, the use of the
mathematically proper derivative of equation (20) may be considered non-acoustical
because of the imbalance it will cause, when used with equation (20), in the more correct
condition for the isentropic propagation, equation (23). Indeed, in the formulation given
by Gupta [1], equation (20) is implemented implicitly with its mathematically proper
derivative. Equation (23) is hence violated; however, there is a subtle point here—although
equation (23) is violated, another condition, which is at least as accurate as equation (23),
is implemented as the condition of isentropic propagation. Again, it may be in place to
mention here that nowhere in reference [1] is there any reference to the condition for
isentropic propagation, equation (34), that will be derived in this section. Therefore, the
premises on which the formulation of reference [1] will be justified in this section represents
only the present author’s own views.

An expression for the entropy fluctuations can be derived also by noting that, in one
dimension, the continuity equation for the total quantities is given by

Dr*+ r*n*'+ r*n*(ln S)'=0, (31)

which is the parent form of equation (9). Upon using this in equation (21), one obtains

(p*/c*v )Ds*=Dp*+ g*p*(n*'+ n*(ln S)'), (32)

where g*= c*p /c*v = g0 + g . This relationship can be linearized as usual by assuming that
the fluctuations in the ratio of specific heat coefficients, g, is small to the second order:

(p*0 c*v )D0s=D0p+ g0p0n'+ g0n'0p+ g0(p0n+ pn0)(ln S)'. (33)

Hence, the condition for isentropic propagation, equation (11), can be stated as

D0p+ g0p0n'+ g0n'0p+ g0(p0n+ pn0)(ln S)'=0. (34)

This result requires that only g, the fluctuations in the ratio of specific heat coefficients,
due to acoustic temperature fluctuations, is small to the second order. It is, therefore, at
least as accurate as equation (23) which requires that c, the fluctuations in the speed of
sound is small to the second order. In fact, equation (34) appears to be slightly more
accurate than equation (23) because, since c*2 = (c0 + c)2 = g*RT*, where c2

0 = g0RT0 and
2c0c= gRT0 + g0RT, c to be small to second order requires that both g and T are small
to second order, while g small to second order only implies that c is proportional to T.

Equation (34) can be used with the continuity and momentum equations, equations (9)
and (10), respectively, to form a coupled system of equations for p, n and r. By using the
variable o= c2

0r− p, these equations can be expressed, after some algebra, in state-space
form as

&p'
n'
o''= &c11

c21

b31

c12

c22

0

b13

b23

b33'&pno' , (35)

where the elements of the first 2×2 block of the system matrix are the same as the elements
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in the formulation of Gupta [1], equation (1), and the remaining elements of the system
matrix are given by

b13 =M2
0 (ln S)'/(1−M2

0 )2, b23 =−M3
0 (ln S)'/r0c0(1−M2

0 )2, b31 = (ln g0)',

(36–38)

b33 = ik/M0 + g0M2
0 (ln S)'/(1−M2

0 )+ b31. (39)

The off-diagonal element b31 is in general small because the temperature dependence of the
ratio of the specific heat coefficients is weak for most perfect gases. In the appendix it is
shown that, in the case of a subsonic mean flow with a low Mach number, say, M0 Q 0·4,
the effects of the off-diagonal gradients b13, b23 and b31 on the solution of equation (35)
are negligibly small. Thus, if the mean flow Mach number is assumed to be low, then
equation (35) can be expressed as a decoupled set of equations consisting of equation (1)
and the following first order differential equation for o; that is,

o'− (ik/M0 + g0M2
0 (ln S)'/(1−M2

0 )+ b31)o=0. (40)

The solution of this equation, say, o2, can be expressed as

o2(x)=A2o2(0)exp0g
x

0

ik dx/M01 , (41)

where the amplification factor A2 is given by A2 = g0(x)p0(x)/g0(0)p0(0). The error wave
given by equation (40) which, like the o-wave of equation (29), travels in the direction of
the mean flow with the velocity of the mean flow, exists along the duct if any imbalance
exists at the origin between p and c2

0r and is amplified or attenuated along the duct
according to whether the duct is diverging or converging. It may be of interest to note that,
if the ratio of the specific heat coefficients is assumed to be a constant, then equation (40)
decouples for any mean flow Mach number and the amplification factor in equation (41)
becomes A2 = p0(x)/p0(0). For this case, equation (41) represents the exact solution of
equation (35) for the variable o. However, irrespective of whether g0 is assumed to be a
constant or is taken as a function of the ambient temperature, the decoupling, from
equation (35), of equation (1) is strictly valid for the case of a subsonic low Mach number
duct. If the mean flow Mach number is relatively large, then equation (35) should be solved
in full, yielding an acoustical three-port model of the duct, as shown in the Appendix.

Thus, for subsonic low Mach number ducts, Gupta’s [1] formulation, equation (1), is
as acoustical as Miles’ formulation. In this case, the energy equation is implemented in
the form of equation (34) and the error in the relationship p= c2

0r is predicted as the
o-wave of equation (41); however, the acoustic fluctuations in the fluid pressure and particle
velocity are not sensitive to this wave.

3. CONCLUSIONS

The relationship p= c2
0r is strictly valid for isentropic propagation in a homogeneous

uniform duct. Nevertheless, it can be used for an ad hoc formulation of sound pressure
and particle velocity transmission in a non-uniform duct carrying a subsonic low Mach
number mean flow. The acoustic density gradient can then be computed either from
p'= c2

0r', or from p'= (c2
0r)'. The present analysis has shown that these two possibilities

are strictly valid for a subsonic low Mach number mean flow and that they are related
to two different but correct relationships that describe the isentropic sound propagation
in a non-homogenous and non-uniform duct. With respect to the formulations of the
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problem based on the latter relationships, the ad hoc formulations are associated with an
error-wave that describes the propagation of the variable o= c2

0r− p along the duct. These
waves are modified in amplitude as they travel along the duct, and this feature can be
utilized as a basis for the comparison of the two formulations in question, namely
equations (1) and (6): a larger attenuation of the o-wave implies a more rapid approach
to the underlying assumed relationship p= c2

0r, and a smaller amplification will imply a
slower divergence from that relationship. As can be seen from equations (30) and (41), the
ratio of the magnification factors of the two error waves is given by A2/A1 = r0(x)/r0(0).
Then, for a subsonic diverging duct, A2/A1 q 1, and for a converging subsonic duct
A2/A1 Q 1. However, the error waves are attenuated along a convergent subsonic duct and
amplified along a divergent subsonic duct. Therefore, it follows that Miles’ formulation,
equation (6), possesses the more favourable error wave characteristics.

If the mean flow Mach number is not low, say, greater than 0·4, then a three-port
formulation of the problem using equation (24) or equation (35) should be undertaken.
This will require specification of the acoustic density, or the variable o, at the origin as
a boundary condition as well as the usual boundary conditions of the two-port analysis.
The situation is simplified if a non-uniform duct connects to a uniform and homogeneous
duct. Then, the origin may be taken at the interface of the two ducts and the extra
boundary condition can be specified as o=0, unless non-isentropic conditions are
prevalent at that interface. In the subsonic low Mach number case, o=0 will imply no
sensible error wave along the non-uniform duct; in the subsonic high Mach number case,
however, an o-wave will develop along the duct (see the figures given in the Appendix).
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APPENDIX: ON THE DECOUPLING OF THE ISENTROPIC DUCT EQUATIONS

This Appendix presents a numerical study on the decoupling of equation (35). The
general results of the analysis are applicable also to the decoupling of equation (24). First,
a general method is described for solving equation (35) numerically.

Equation (35) can be written in matrix notation as

P'(x)=H(x)P(x). (A1)

where P(x) is the vector {p(x) n(x)o(x)} and H(x) is the square state-space matrix. From
the theory of the matrizant, the general solution of equation (A1) is given by

P(L)= [Z]L0 P(0), (A2)

where [Z]L0 denotes the matrizant for the interval 0E xEL. This is a square 3×3 matrix,
which can be evaluated numerically by dividing the interval 0E xE 1 into N parts by
introducing intermediate points x1, x2, . . . , xN−1. For simplicity, the lengths of the parts
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are assumed to be all equal; that is, l= xk − xk−1, k=1, 2, . . . , N and xN =L=Nl. Then
from the properties of the matrizant,

[Z]L0 = [Z]xN
xN−1

· · · [Z]x2
x1
[Z]x1

0 , (A3)

where [Z]xk
xk−1

denotes the matrizant for the interval xk−1 E xE xk . If l is small enough,
then the state-space matrix, H(x), can be assumed to be constant in this interval, say,
H(x)2H(jk )=Hk , where xk−1 E jk E xk , and the matrizant for this interval can be
evaluated approximately from

[Z]xk
xk−1

=exp(Hkl)=F−1
k eLk lFk , (A4)

where Fk and Lk denote the eigenvector and eigenvalue matrices of the 3×3 matrix Hk

and, in this paper, jk =(xk−1 + xk )/2. As the number of parts is increased, equation (A3)
will converge to the exact solution. Convergence is in general very fast and only a few
number of divisions are required for obtaining a satisfactory accuracy.

Figure A1. Elements of the matrizant [Z]L0 for a subsonic divergent exponential duct with inlet and outlet
cross-sectional areas of 0·01 m2 and 0·02 m2, a stagnation temperature of 295 K, a stagnation pressure of 101·3 Pa
and inlet Mach numbers M0(0)=0·3, 0·593 and 0·9. The larger the Mach number is, the greater is the apparent
deviation of the off-diagonal elements Z13, Z23, Z31 and Z32, from the zero line.
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Figure A2. Elements of the matrizant [Z]L0 for the same duct of Figure A1 but with a stagnation temperature
of 600 K, a stagnation pressure of 121·2 Pa and inlet Mach numbers M0(0)=0·3, 0·6 and 0·9. The larger the
Mach number is, the greater is the apparent deviation of the off-diagonal elements, Z13, Z23, Z31 and Z32, from
the zero line.

As can be seen from equation (A3) and (A4), if b31 and b13 in equation (35) were zero,
then the off-diagonal elements on the third row and the third column of the matrizant [Z]L0
would also be zero. Conversely, equation (35) can be considered as being decouplable if
those off-diagonal elements of [Z]L0 are all approximately equal to zero.

The variation of the real and imaginary parts of the elements of the matrizant [Z]L0 , say,
Zij , i, j=1, 2, 3, with frequency and inlet Mach number are shown in Figure A1 for the
diverging exponential duct considered by Miles [4] and also by Gupta et al. [3]. The inlet
and outlet cross-sectional areas of this duct are 0·01 m2 and 0·02 m2, respectively, the
stagnation temperature is 295 K and the stagnation pressure is 101·3 kPa. The ambient gas
is assumed to be dry air and the temperature dependence of the specific heat coefficients
is taken into account in the computations. The elements of the matrizant are plotted for
inlet mean flow Mach numbers of M0(0)=0·3, 0·593 and 0·9. The intermediate value
corresponds to a mass flow rate of 2 kg/s which is the case considered in references [3, 4].
For completeness, all the elements of the matrizant [Z]L0 are shown in Figure A1. The main
interest here, however, is on the off-diagonal elements Z13, Z23, Z31 and Z32. The elements
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in the first 2×2 block of [Z]L0 , Z11, Z21, Z12 and Z22, correspond to equation (1) and
their magnitudes for this duct are given also in reference [3] for the 2 kg/s mass flow rate
case.

The mean flow Mach numbers are not marked on the curves in Figure A1 for clarity. For
the elements of the matrizant that are of interest here, the curves can be matched with the
three inlet Mach number considered by noting the following trends. The Z33 characteristics
are slightly damped sinusoids, the period of which on the frequency axis is approximately
proportional to the inlet Mach number; and the larger is the inlet Mach number, the greater
is the apparent deviation of the off-diagonal elements Z13, Z23, Z31 and Z32 from the zero line.
The latter characteristics are also attenuated slightly with frequency.

As can be seen from Figure A1, for inlet Mach numbers less than or equal to 0·3, the
off-diagonal elements Z13, Z23, Z31 and Z32 may be assumed to be approximately equal to
zero; however, as the inlet Mach number increases they gain prominence and the decoupling
of equation (35) may no longer be justified. These characteristics are somewhat insensitive
to changes in the outlet cross-sectional area. In Figure A2 are shown, for the same duct, the
elements of the matrizant for a stagnation temperature of 600 K and a stagnation pressure
of 121·2 kPa, for inlet Mach numbers of 0·3, 0·6 and 0·9, which can be matched with the
characteristics as described above for Figure A1. It is seen that increasing the stagnation
temperature and pressure has the effect of increasing the off-diagonal elements Z13, Z23, Z31

and Z32 for the same inlet Mach number and, consequently, lowering of the threshold value
of the mean flow Mach number for which the decoupling of equation (35) will be valid.

Thus, it appears that, equation (35) can be decoupled to equation (1) and equation (40)
if the mean flow Mach number is less than the limit indicated above, that is, less than about
0·3 or 0·4. Although a similar numerical study has not been carried out for equation (24),
this conclusion should be valid also for the decoupling of this equation because, for the low
mean flow Mach number case, the difference between the two formulations pertains to only
small terms.


